Finitely generated gyrovector subspaces and orthogonal gyrodecomposition in the Möbius gyrovector space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gyrogroups and Gyrovector Spaces and Hyperbolic Geometry

We show that the algebra of the group SL(2; C) naturally leads to the notion of gyrogroups and gyrovector spaces for dealing with the Lorentz group and its underlying hyperbolic geometry. The superiority of the use of the gyrogroup formalism over the use of theSL(2; C) formalism for dealing with the Lorentz group in some cases is indicated by (i) the validity of gyrogroups and gyrovector spaces...

متن کامل

Subspaces and orthogonal decompositions generated by bounded orthogonal systems

We investigate properties of subspaces of L2 spanned by subsets of a finite orthonormal system bounded in the L∞ norm. We first prove that there exists an arbitrarily large subset of this orthonormal system on which the L1 and the L2 norms are close, up to a logarithmic factor. Considering for example the Walsh system, we deduce the existence of two orthogonal subspaces of L2 , complementary to...

متن کامل

The Space of Finitely Generated Rings

The space of marked commutative rings on n given generators is a compact metrizable space. We compute the Cantor-Bendixson rank of any member of this space. For instance, the Cantor-Bendixson rank of the free commutative ring on n generators is ωn, where ω is the smallest infinite ordinal. More generally, we work in the space of finitely generated modules over a given commutative ring.

متن کامل

An Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach

‎The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]‎. ‎In [1]‎, ‎Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups ‎and gyrovector spaces for dealing with the Lorentz group and its ‎underlying hyperbolic geometry‎. ‎They defined the Chen addition and then Chen model of hyperbolic geomet...

متن کامل

The Intrinsic Beauty, Harmony and Interdisciplinarity in Einstein Velocity Addition Law: Gyrogroups and Gyrovector Spaces

The only justification for the Einstein velocity addition law ‎appeared to be its empirical adequacy‎, ‎so that the ‎intrinsic beauty and harmony in Einstein addition remained for a long time ‎a mystery to be conquered‎. ‎Accordingly‎, ‎the aim of this expository article is to present ‎(i) the Einstein relativistic vector addition‎, ‎(ii) the resulting Einstein scalar multiplication‎, ‎(iii) th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2017

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2016.11.039